女人张开腿让男人添,在线?亚洲?国产 欧美,嫩草乱码一区三区四区,特级做A爰片毛片免费69

Expert forum

首頁 專家論壇 標(biāo)本專家Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics.
注冊

Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics.

2017-12-08 07:04來源:原版作者:Chen W

BACKGROUND:

Circulating tumor cells (CTCs) have shown prognostic relevance in many cancer types. However, the majority of current CTC capture methods rely on positive selection techniques that require a priori knowledge about the surface protein expression of disseminated CTCs, which are known to be a dynamic population.

METHODS:

We developed a microfluidic CTC capture chip that incorporated a nanoroughened glass substrate for capturing CTCs from blood samples. Our CTC capture chip utilized the differential adhesion preference of cancer cells to nanoroughened etched glass surfaces as compared to normal blood cells and thus did not depend on the physical size or surface protein expression of CTCs.

RESULTS:

The microfluidic CTC capture chip was able to achieve a superior capture yield for both epithelial cell adhesion molecule positive (EpCAM+) and EpCAM- cancer cells in blood samples. Additionally, the microfluidic CTC chip captured CTCs undergoing transforming growth factor beta-induced epithelial-to-mesenchymal transition (TGF-β-induced EMT) with dynamically down-regulated EpCAM expression. In a mouse model of human breast cancer using EpCAM positive and negative cell lines, the number of CTCs captured correlated positively with the size of the primary tumor and was independent of their EpCAM expression. Furthermore, in a syngeneic mouse model of lung cancer using cell lines with differential metastasis capability, CTCs were captured from all mice with detectable primary tumors independent of the cell lines' metastatic ability.

CONCLUSIONS:

The microfluidic CTC capture chip using a novel nanoroughened glass substrate is broadly applicable to capturing heterogeneous CTC populations of clinical interest independent of their surface marker expression and metastatic propensity. We were able to capture CTCs from a non-metastatic lung cancer model, demonstrating the potential of the chip to collect the entirety of CTC populations including subgroups of distinct biological and phenotypical properties. Further exploration of the biological potential of metastatic and presumably non-metastatic CTCs captured using the microfluidic chip will yield insights into their relevant differences and their effects on tumor progression and cancer outcomes.

版權(quán)聲明:

本網(wǎng)站所有注明“來源:“陽普醫(yī)療”的文字、圖片和音視頻資料,版權(quán)均屬于陽普醫(yī)療所有,非經(jīng)授權(quán),任何媒體、網(wǎng)站或個人不得轉(zhuǎn)載,授權(quán)轉(zhuǎn)載時須注明

“來源:陽普醫(yī)療”。本網(wǎng)所有轉(zhuǎn)載文章系出于傳遞更多信息之目的,且明確注明來源和作者,不希望被轉(zhuǎn)載的媒體或個人可與我們聯(lián)系,我們將立即進行刪除處理。

網(wǎng)友評論:

  • <center id="wvtgz"><tr id="wvtgz"><track id="wvtgz"></track></tr></center>
  • <ul id="wvtgz"></ul>

      
      
        1. 主站蜘蛛池模板: 林甸县| 镇平县| 博白县| 乌兰县| 吉木乃县| 贵南县| 高州市| 上饶县| 元氏县| 余姚市| 郸城县| 黄浦区| 郸城县| 广南县| 营口市| 太湖县| 织金县| 河南省| 乡宁县| 武强县| 焦作市| 新干县| 海林市| 焉耆| 合作市| 栖霞市| 津南区| 龙州县| 台北市| 黔江区| 成都市| 科技| 当阳市| 昌都县| 曲周县| 张家口市| 镇雄县| 双流县| 尖扎县| 哈尔滨市| 鄂托克前旗|